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Abstract: 

In this paper, a SEIR epidemic model is considered; where individuals in the population are 
assigned to different compartments of SEIR defined with respect to epidemic status of Covid-19 
in Nigeria. The article has demonstrated a simple mathematical model for the transmission of 
Covid-19 disease taking into account loss of human immunity with the aim that this model 
proves useful in controlling the possibility of a person contracting Covid-19 twice. When the 
basic reproduction number   means that the Covid-19 free equilibrium solution is locally 
asymptotically stable. This suggests that the number of new cases of the disease will decrease 
over time and eventually will vanish as that whcih causes   are established. The basic 
reproduction number and the model analysis (local stability of disease-free equilibrium and 
disease-endemic equilibrium) of the system were calculated and the stability of the SEIR model 
was checked. 
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I. Introduction 

 
The globe has experienced Covid-19 (Corona virus disease 2019), the fifth pandemic 

since the 1918 flu pandemic [24]. This Viral Diseases (COVID-19) is an infectious disease 
with vertical transmission, the first case of which appeared towards the end of 2019 in Wuhan, 
China [24, 26]. This coronavirus has been linked to millions of infections worldwide and more 
than 2 million fatalities. The mortality rate differs from nation to nation [25]. There exist a 
wide variety of models that can be used to describe the evolution of an epidemic. Main 
standard is held by the so called compartmental models, i.e., the family of SIR based models 
(SIR, SEIR, SIRS, etc) [27, 28].  

 
The dynamics of covid-19 in Nigeria is represented by the ordinary differential 

equations using mathematical modelling, which can be very useful in understanding the 
various disease spread factors and thereby formulating the best control practices [1]. The 
models are used to estimate numerous epidemiological parameters, including proliferative 
amount, and to forecast things including the way an infection transmits, overall amount of 
contaminated, the length of an epidemic, and many other things [2, 3]. The effective and basic 
reproduction number for COVID-19 dynamics in Nigeria between April 13, 2020, and May 7, 
2020, was calculated by Adekunle et al. in [4] to be   while Sunday et al in [5] compute   in 
Nigeria between the February 27,  2020 to May 27, 2020. These COVID-19 symptoms and 
indicators may appear in people two days to two weeks after being exposed to the disease [12]. 
Also, it has been noted that asymptomatic people appear to make up 40% to 45% 
approximation of Covid-19 infestations, and this group of people can spread the virus for a 
protracted period of time [13]. As a result, we include this group of people in the exposed 
individuals. There are many different versions of the SEIR model, and with control strategies, 
for example, in [14],[15], [16] and [17], they computed the number of infected, recovered, and 
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dead individuals based on the number of contacts, probability of disease transmission, 
incubation period, recovery rate, and fatality rate. In this work, we are interested in the study 
of a continuous model of a vertically transmitted disease, a Susceptible, Exposed Infectious 
and Recovered (SEIR), spread model. In [21, 22, 23], the authors formulated and studied 
mathematical models giving the dynamics of the transmission of infectious diseases. They 
study the stability of steady states when the basic reproduction rate R0 is less than one and 
greater than one. Also, they study the impact of quarantine on the dynamics of infectious 
disease transmission (this method is extensively applied to the outbreak of Corona Virus 
Diseases 2019 (COVID-19)). 

 
The control techniques (hand sanitizer usage, COVID-19 patient treatment, and active 

screening with testing and prevention against recurrence and reinfection of persons who have 
recovered from COVID-19) must be carefully implemented if COVID-19 is to be successfully 
eradicated in Nigeria [18]. The incidence of reinfection and recurrence in persons who have 
recovered from COVID-19 will be determined in this investigation. An epidemiological model 
predicts that the Covid-19 virus's rates of transmission, recovery, and loss of immunity will 
change over time and depend on a variety of variables, including the seasonality of 
pneumonia, mobility, testing rates, capital weather [19], social behaviours, and strain-specific 
factors [20]. 

 
II. Reserach Methods 

 
Following the previous models, the relevant compartments for the dynamics of Covid-

19 in Nigeria are integrated into a general SEIR model. The population is divided into four 
compartments: susceptible (S), exposed (E), infectious (I) and cured (R). Transmission of the 
disease is thought to occur only when susceptible individuals come into contact with 
infectious individuals.  
 
2.1 Properties of the Model 

This work modifies the compartmental epidemiological Susceptible-Infectious-
Removed (SIR) model [6] to Susceptible-Exposed-Infectious-Removed (SEIR) model that 
describes the spread of Covid-19 in Nigeria. The population under study is divided into 
Susceptible, S , Exposed, E , Infected, I , and Recovered, R , respectively, through a dynamical 
system. The name of these compartments represents the state variables or the number of 

people in each compartment at time t . Thus, )(tS , )(tE , )(tI  and )(tR  denote the susceptible, 

exposed, infectious and recovered population at time t . The four compartments make up the 
entire population of the country.  

 
2.2 Mathematical Formulation of the Model  

In this model the total population size, N, is considered closed as birth and death 
(death induced by the virus) rates are assumed equal. The total population is divided into four 
classes as shown below with Susceptible ( )S , Exposed ( )E , Infected ( )I and Recovered ( )R  

compartments. The incidence rate 
N

SI1 , where I1  measures the infecting force of  Covid-

19 infection. The model diagram is shown below.  
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Figure 1. Model diagram for the five compartments 
 

The susceptible people )(S  will move to the exposed compartment )(E updating the 

number of exposed person to .1SIa  Out of this exposed ones, Ea2
 individuals will move 

from E  compartment to the infectious compartment )(I . From the infectious compartment, 

Ia3 persons move to the recovery group while Ia4
persons die of the disease.   

 
Table 1. Summary of Parameters and meaning 

Parameters Meaning 

1
  Disease transmission rate 

2
  Progression rate 

3
  Recovery rate 

4
  Disease induced death rate 

5
  Immunity rate 

6
  Birth rate 

7
  Natural death rate 

 
The total number of fixed people in the population at time t  is given 

by )()()()( tRtItEtSN  . The initial values of )(),(),( tItEtS and )(tR  are denoted by 

000
,, IES  and 0

R  respectively.  

 
2.3 Covid-19 SEIR Model quations 

Using the model diagram, we derived the following system of ordinary differential 
equations. 

,7516 SR
N

SI
N

dt

dS
   

,)( 721 E
N

SI

dt

dE
   

,)( 7432 IE
dt

dI
   

.)( 753 RI
dt

dR
 

 

The dead people per unit time is given by 0)0(;
)(

4  DI
dt

tdN

dt

dD
  using the 

assumption that 76   . 

 

Considering the varying population, ),(tN  and the proportions of each compartment 

of individuals in the population namely NRrNIiNEeNSs / and,/,/,/    
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We obtain the state variables ries  and,,, . These variables satisfy the following system of 

differential equations. 

,7516 srsi
dt

ds
             

1 

,)( 721 esi
dt

de
                                                                                   

2 

,)( 7432 ie
dt

di
                                                                         

3 

.)( 753 ri
dt

dr
 

 
                                                                          4 

Here, 1)()()()()(  trtitetstN  for all ],0[ Tt  and T is the total time of 

investigation. It follows that ).()( 7676 tNries
dt

dr

dt

di

dt

de

dt

ds
 

 
It follows that the death induced by covi-19 is given as: 

I
dt

dd
3  

 
Table 2. Fractions of the population 

Compartment Description 

s  Fraction of population that are susceptible 
e  Fraction of population that are exposed 

i  Fraction of population that are infectious 

r  
Fraction of population that recovered 

 
It is assumed that all the state variables and parameters are positive and no pre-existing 

immunity.  
 

2.4 Covid-19 SEIR Model Analysis   
To find the feasible region of the model (1 – 4), the following theorem is adopted in 

the study. 

Theorem 1:   let .0  ,0  ,0  ,0 0000  ries  Then the solutions )(  ),(  ),(  ),( trtitets of the model 

will remain non-negative for all time 0t .  
 

Proof Since the equation on the right-hand side of the model (1) – (4) is a continuous 

smooth function on },0)(  ,0)(  ,0)0(  ,0)0(:)(  ),(  ),(  ),({4  trtiestrtetitsR for 

.0t  
It can be seen from equation (1) that. 

,)( 5716 rsi
dt

ds
  dtti

ts

r

ts

ds
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
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0
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
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
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t
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
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                                      8 

Therefore, the solution ,0)(  and  ,0)(  ,0)0(  ,0)0(  trties for 0t  
 

Theorem 2. The model (1) – (4) of the initial condition in 4
R  is positively invariant in 

})( )( )( )(0 :) ,,{
7

64




   trtitetsRries

   
     

          9 
Proof 

Add equations (1) – (4), yields N
dt

riesd
dN 76

),,,(
 

 
then N

dt

dN
76    

It can easily be deduced that the solution of the equation by applying comparison principle is  

)(

7

6 )0()( dteNtN 



 , When t  then 

.)(
7

6




tN           

 10 
 
2.5 Determination of the Basic Reproduction Number 

The basic reproduction number, 0 ,R of the model is determined by employing the 
results of the next-generation matrix [9] and the first four differential equations. Let 

)(  ),,,,( xfriesx    be the rate of appearance of new infection and )( xv   be the rate of 

transfer of individuals from all other sources into the compartment and transfer of individuals 

out of the compartment. The infected compartments are only e  and i  then F  and V  are the 

Jacobian matrices of order 2 2  as defined as defined in Mathematical Tools for 

understanding Disease Dynamics [10] and the values of F  and V  for the new infection terms 
and the transmission terms are given respectively as 

 

10

0 0
F

 
  
 

 and 
2 7

2 3 4 7

0
.V

 

   

 
      

 

2 7 3 4 7( )( )V          

1 2 1
1

2 7 3 4 7 7 3( )( ) ( )

0 0

K FV

  

      

 
 

     
 
 

 

Hence, the basic reproduction number 0R  for the COVID-19 model (1 – 4) is 

obtained by calculating the spectral radius of  the matrix 1FV  as: 

 

1 2
0

2 7 3 4 7

.
( )( )

R
 

    


    
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2.6 Stability Analysis of the Covid-19 Model 
We note that at endemic equilibrium point,  
 

021

74372* 1))((

R
s 







and  

 

;0
))())(()((

)))(()((

7275775421

7221727* 








i

 

 

 
.0

))())(()((

)))((1)((

7275775421

720727* 







 R
i

 
 

Where     743 . 

 
We need the aid of Routh-Hurwitz stability criterion in this section: Routh-Hurwitz 

Stability Criterion [7] 
The Routh-Hurwitz stability criterion states that for a system having a characteristic 

equation 

0... 1
1

10  


nn
nn aSaSaSa  to be asymptotically stable, all the principal minors of the 

matrix 
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Hn  

must be positive and nonzero. 
 

Theorem 3: When 10 R , the Covid-19 free equilibrium 0 of the dynamical COVID-19 

model (1 – 4) is locally asymptotically stable. 
 

Proof: By evaluating the Jacobian matrix of the first four equations at the Covi9-19 
free equilibrium point, we obtained the simplified Jacobian matrix given by 
 































)(00

0)(0

0)(

0

*),,,(

753

7432

*

172

*

1

5

*

17

*

1

***









a

si

si

riesJ

 
Using 0* i  and 1* s , we evaluate the characteristics equation as shown below. 
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
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0)

2)()((

21

2

747

377242327432

2

757








 

The first two roots are negative: 

).( 757   and
 

0)2( 21

2

747377242327432

2  
 

Let 

;2;1 743210   ww
 

21

2

747377242322  w
 

 
Then, the characteristics equation at disease free equilibrium becomes 

.021

2

0  www 
 

 
By Routh-Hurwitz criterion, we need to show that 01 w  and .021 ww  We note that 

01 w  since all the parameters are positive. 021 ww  implies that .02 w  Thus, 

 

0.))(( 21743722  w  

.))(( 2174372    

.
))((

1 0

74372

21 R







 
 

Hence, 02 w whenever .10 R  
 

By Routh-Hurwitz criterion, we conclude that the SEIR model is locally asymptotically 
stable if  .10 R  

 
2.7 Global Stability of Covid-19 free Equilibrium 

To obtain the conditions for the global stability for 0 , we employed the approach 

presented in [8], which states that the SEIR system model can be written as  

0)0,(),,(

),(





XGZXG
dt

dZ

ZXF
dt

dX

 

Where nRX  represent the uninfected individuals and mRZ  describes the infected 
individuals. According to this notation, the Covid-19-free equilibrium is given by )0,( ,00 XQ  . 

Now, the following two conditions guarantee the global s tability of the Covid-19 free 
equilibrium. 

 

:1P )0,(XF
dt

dX
, 0X is globally asymptotically stable 

:1P ),(),( ZXGBZZXG


 , where 0),( 


ZXG for ZX ,  

Lemma 1: The equilibrium point )0,( 00 XQ  is globally asymptotically stable when 10 R  and 

assumptions 2 1  and PP are satisfied 
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Theorem 4: The DFE point 0  is globally asymptotically stable provided 10 R .Proof 
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The characteristic polynomial of )0,( XFJ  is: 
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Hence, it can be seen that B satisfies all conditions explained in 2P . 

 
Theorem 4. The endemic equilibrium point of the COVID-19 model (1 - 4) is locally 

asymptotically stable when .10 R   

Proof: The Jacobian matrix evaluated at  ****
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Then, we solve 
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Then, the characteristics equation at endemic equilibrium point becomes 
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Where .  denotes determinant. 
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By Routh-Hurwitz criterion, the disease endemic equilibrium point is locally asymptotically 
stable.  

 
III. Results and Discussion 

 
3.1 Parameters Values 

The table below represents the values of the model parameters. 
  

Table 3. Summary of Parameter values 

Parameters Value Reference 

1  0.70746202 [5] 

2  0.18764358 [5] 

3  0.31817251 [5, 11] 

4
  0.002942 [5, 11] 

5  0.00000049243 [5] 

6  0.0001 [5] 

7  0.0001 [5, 11] 

 
3.2 Verification of the Stability Condition 

In confirmation that the disease free equilibrium of the SEIR model is locally 

asymptotically stable when ,10 R  the numerical result of disease free equilibrium of the SEIR 

model shows that 0508958.01 w   and 00598478.0* 21 ww . The value of the 

parameters are 

4542.0* s , 00029.0* e , 00017063.0* i , 540238.0* r  and 00501994.0* d . 
 
Also, the disease endemic equilibrium of the SEIR model is locally asymptotically 

stable when 10 R , so the numerical result of disease endemic equilibrium of the SEIR model 

shows that 

0509279.01  , 010596295.7 5

2  
, 010650295.3 10

3    and 

010657467.2 19

4  
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3.3 Covid-19 model with control 
On introducing a control )(tu  which stands for the control measure, i.e, the 

prescribed social distancing order in Nigeria, to the system (1 – 4) as given below: 

,)1( 7516 srsiu
dt

ds
   

,)()1( 721 esiu
dt

de
   

,)( 7432 ie
dt

di
   

.)( 753 ri
dt

dr
   

 
3.4 Linearized form of the Covid-19 model  
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The state space model for the system is given as  

;BuAxx   
We want to compute the concept of controllability and observability. 
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Substituting the parameter values, we have 
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Test for Controllability  

         12 BABAABBM n

C

 is controllable if the rank of nM
C
 where 4n  then 
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Controllable matrix is 
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331039.7 CM  

Since the determinant of CM  is non-zero, therefore .4 nMC  Hence, the system is 

completely controllable. 
 
Test for Observability 
 

   )( ... )(    12 TnTTTTTT

b CACACACQ  is observable if the rank of nQb  where 4n  

then 
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Since the determinant of bQ  is non-zero, therefore .4 nQb  Hence, the system is 

completely observable. 
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IV. Conclusion 
 
In this paper, the mathematical model for transmission of covid-19 disease can be 

useful in understanding the dynamical behaviour of covid-19 in Nigeria, his suggested that the 
number of new cases of the disease will decline over time as the strategies that cause  are 
established. The system was shown to be completely controllable and observable. The basic 
reproduction number and examined the stability analysis (local stability of both disease free 
equilibrium and disease endemic equilibrium) of the system were computed and the stability of 
the SEIR model verified. 
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